scalar and vector numericals
Dear students scalar and vector numericals pdf of class 11 neet questions and scalar and vector jee questions aiims important questions have been collected at one place to get you all prepared for your neet, aiims ,jee main, advance exams as well as cbse board exams and other board exams. Visit my nawendu classes youtube channel for more help.
(b) $\left| \vec{a}-\vec{b} \right|$
Answer- (a) 7unit (b) $\sqrt{19}$ unit
2. The component of $9\hat{i}+17\hat{k}$ along Z axis has magnitude
Answer- 17
3. The magnitude of vectors $\overrightarrow{A,}\overrightarrow{B},\overrightarrow{C}$ are 3,4,5 units respectively. If $\overrightarrow{A}+\overrightarrow{B}=\overrightarrow{C}$ then the angle between $\overrightarrow{A}and\overrightarrow{B}$ is
CBSE PMT 1998
Answer- π/2
4. If two numerically equal forces P and Q acting at a
point produces a resultant force of magnitude P then the angle between the two
original forces is
AFMC1998
Answer- 120°.
5.Two vectors A and B are such that \[\vec{C}=\vec{A}+\vec{B}and{{\left| {\vec{C}} \right|}^{2}}={{\left| {\vec{A}} \right|}^{2}}+{{\left| {\vec{B}} \right|}^{2}}\] is the angle between positive direction of $\overrightarrow{A}$and $\overrightarrow{B}$then $\theta $ will be l be
AFMC1999
Answer- π/2
6. If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is
NEET 2016 ,CBSE AIPMT 1991
Answer- ${{90}^{\circ }}$
7. At what angle two forces (P+Q) and (P-Q) act so that resultant is $\sqrt{3{{P}^{2}}+{{Q}^{2}}}$.
Answer- ${{60}^{\circ }}$
8. If vector $\overrightarrow{A}$ and $\overrightarrow{B}$are
perpendicular to each other then value of $\alpha $ is
\[\overrightarrow{A}=2\hat{i}+3\hat{j}+8\hat{k}\] ,
CBSE PMT 2005 ,AIIMS 2010
Answer- - ½
9. The vector sum of two forces is perpendicular to their
vector differences. In that case, the forces are
CBSE PMT 2003
Answer- Equal to
each other in magnitude
10. The angle between two vectors of magnitude 12 and 18
units when their resultant is 24 unit is
CBSE PMT 1999
11.Find the resultant of three vectors shown in figure.
Answer- $\sqrt{50+10\sqrt{3}}$,${{\tan }^{-1}}\left( \frac{5+\sqrt{3}}{4} \right)$
12. Magnitude and direction of \[\overrightarrow{a}=\hat{i}-\sqrt{3}\hat{j}\]
Answer- 2unit, ${{\tan }^{-1}}\left( -\sqrt{3} \right)$
13. If a unit vector is represented by $0.5\hat{i}+0.8\hat{j}+c\hat{k}$ the value of c is
CBSE PMT 1999
Answer-
$\sqrt{0.11}$
14.Write unit vector in the direction of \[\overrightarrow{A}=5\hat{i}+\hat{j}-2\hat{k}\]
Answer- $\frac{5}{\sqrt{30}}\hat{i}+\frac{1}{\sqrt{30}}\hat{j}-\frac{2}{\sqrt{30}}\hat{k}$
15. If a particle moves with a velocity given by a vector \[\vec{V}=(6\hat{i}-4\hat{j}+3\hat{k})\] m/s under the influence of a constant force \[\vec{F}=(20\hat{i}+15\hat{j}-5\hat{k})\]N.The instantaneous power applied to the particle is
CBSE PMT 2000
Answer- 45 J/S
16. The $\vec{A}$ and $\vec{B}$ are such that $\left|
\vec{A}+\vec{B} \right|=\left| \vec{A}-\vec{B} \right|$ .The angle between the
two vectors is
CBSE PMT 2006
Answer- 90°
17. What is the dot products of two vectors of magnitude 3 and 5 if the angle between them is 60 degree.
AFMC 1997
Answer- 7.5 unit
18. Area of parallelogram formed by adjacent sides as the vectors $\vec{A}=3\hat{i}+2\hat{j}$ and $\vec{B}=2\hat{j}-4\hat{k}$ is
Answer= $\sqrt{244}$
19. If \[\left|
\vec{A}\times \vec{B} \right|=\frac{\sqrt{3}}{2}AB\] then the value of $\left|
\overrightarrow{A}+\overrightarrow{B} \right|$ is
CBSE PMT 2004
Answer- $\sqrt{{{A}^{2}}+{{B}^{2}}+AB}$
20. If the angle between $\vec{A}and\vec{B}$ is $\theta $, the value of the product $\left(
\vec{B}X\vec{A} \right).\vec{A}$ is
equal to
CBSE PMT 2005
Answer- Zero
21. A body constrained to move in y direction is subjected to force given by \[\vec{F}=(-2\hat{i}+15\hat{j}+6\hat{k})\]N.What is the work done by this force in moving the body through a distance of 10m along y axis
CBSE PMT 1994
Answer- 150 J
22. The result of $\left( \vec{A}X\vec{0} \right)$ will be equal to
CBSE PMT 1992
Answer- Zero vector
23. The angle
between two vectors $\vec{A}=3\hat{i}+4\hat{j}+5\hat{k}and\vec{B}=3\hat{i}+4\hat{j}-5\hat{k}$
will be
CBSE PMT 2001
Answer- 90°
24. If $\vec{A}X\vec{B}=\vec{B}X\vec{A}$
,then angle between $\vec{A}and\vec{B}$ is
AIEEE 2004
Answer- 0
25. A particle has an initial velocity $3\hat{i}+4\hat{j}$
and an acceleration of $0.4\hat{i}+0.3\hat{j}$.It's speed after 10s is
AIEEE 2009
Answer- $7\sqrt{2}$units
26. The vectors$\vec{p}=a\hat{i}+a\hat{j}+3\hat{k}and\vec{Q}=a\hat{i}+2\hat{j}+\hat{k}$
are perpendicular to each other. The positive value of a is
AFMC 2000
Answer- 3
27. Find component of a vector $\vec{A}=2\hat{i}+3\hat{j}$ along the directions of $\hat{i}+\hat{j}$ and $\hat{i}-\hat{j}$ .
Answer- $\frac{5}{\sqrt{2}}unit,-\frac{1}{\sqrt{2}}unit$
28. Find the torque of a force \[\overrightarrow{F}=-3\hat{i}+ \hat{j}+5\hat{k}\] acting at the point \[\overrightarrow{r}=7\hat{i}+3 \hat{j}+\hat{k}\]
CBSE AIPMT 1997
Answer-
29.Let \[\overrightarrow{A}=4\hat{i}+3 \hat{j}+2\hat{k}\]
and \[\overrightarrow{B}=2\hat{i}-5 \hat{j}+6\hat{k}\] then find
(a) magnitude of
$\vec{A}$
(b) magnitude of
$\vec{B}$
(c) magnitude of
$\vec{A}$+$\vec{B}$
(d) magnitude of $\vec{A}$-$\vec{B}$
(e) magnitude of 4$\vec{A}$+3$\vec{B}$
(f) magnitude of $\vec{A}$X$\vec{B}$
(g) Vector (or direction) cosines of
$\vec{B}$X$\vec{A}$
(h)Unit vector along of
($\vec{A}$-$\vec{B}$)X($\vec{A}$+$\vec{B}$)
(i) Angle between $\vec{A}$ and $\vec{B}$
(j) magnitude of $\vec{A}$.$\vec{B}$
Answer- (a)$\sqrt{29}$unit
(b)$\sqrt{65}$
unit
(c) $\sqrt{104}$
unit
(d) $\sqrt{84}$ unit
(e) $\sqrt{1169}$ unit
(f) $28\hat{i}-20\hat{j}-26\hat{k}$
(g) $l=-\frac{28}{\sqrt{1860}},m=\frac{20}{\sqrt{1860}},n=\frac{26}{\sqrt{1860}}$
(h) $56\hat{i}-40\hat{j}-52\hat{k}$
(i) ${{\cos
}^{-1}}\frac{5}{\sqrt{1885}}or{{\sin }^{-1}}\frac{\sqrt{1860}}{\sqrt{1885}}$
(j) 5 unit
30. Two forces P and Q of magnitude 2F and 3F , respectively are at an angle \[\theta \] with each other. If the force Q is doubled, then their resultant also gets doubled. Then, the angle \[\theta \] is
IIT 2019 Main,10 Jan II
Answer- ${{120}^{\circ }}$
31. Two vectors $\vec{A}$ and $\vec{B}$ have equal magnitudes . If magnitude of $\vec{A}+\vec{B}$ is equal to n times the magnitude of $\vec{A}-\vec{B}$ , then the angle between $\vec{A}$ and $\vec{B}$ is
IIT 2019 MAIN 10 JAN II, AIIMS 2016
Answer- ${{\cos }^{-1}}\left( \frac{{{n}^{2}}-1}{{{n}^{2}}+1} \right)$
IIT 2019 MAIN ,08 APRIL II
Answer- -118.5
33. In the cube of of side ‘a’ shown in the figure, the vector form the central point of the face ABOD to the central point of the face BEFO will be
IIT 2019 MAIN 10 JAN I
Answer- $\frac{1}{2}a\left( \hat{j}-\hat{i} \right)$
No comments